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Abstract We stress the convenience of some analytical methods which have been intro-
duced recently [Mondaini, R. P.: In: Nonconvex Optimization and its Applications series,
pp. 373–390. Kluwer Acad. (2003); Mondaini, R. P.: In: BIOMAT 2005, International Sym-
posium on Mathematical and Computational Biology, pp. 327–342. World Scientific Co
Ltd (2006)] for calculating the Steiner Ratio of finite sets of points in R

3. These methods
are good enough at reproducing the results obtained by reduction of the search space of
numerical algorithms and can be easily extended to any number of dimensions.

Keywords Steiner ratio · Analytical method · Euclidean Steiner trees

1 Introduction

The scientific literature of mathematical modelling of macromolecular structure as well as the
biochemical and biological literature is full of helical models, helicoidal strips, helices and
other similar graphical representations in the textbooks [1]. Even the literature of Discrete
Mathematics contains assumptions of helical conformation of point sets as the basis for the
introduction of still unproved conjectures. If the search for Steiner minimal trees corresponds
to the search for minimal energy configurations of those structures, we can start to doubt of
the faithfulness of these representations. We can imagine that they are unnecessary since any
family of smooth and continuously differentiable curves will play the same role in a model-
ling process. It now follow a summary of the present contribution: in Sect. 2, we introduce the
treatment of evenly spaced points in 3D Euclidean Space. We also make a digression about
sets of points which are simultaneously even spaced along continuous and differentiable
curves. We think that it would be worthwhile to use these observations in the construction of
successful models and we hope to contribute with useful information as a valid track in the
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search of the uniqueness of helical representations of biomolecular structures. The third sec-
tion is aimed to develop the systematic description of spanning and Steiner trees. This section
also emphasizes that the arbitrary character of an intrinsic function of the modelling could
be taken as a new variable in a new two-dimensional problem of unconstrained optimization.
Section 4 contains the extension of this analytical treatment to a new form of associating
subsequences of evenly spaced points. These structures are analogous to protein structures
of α-helices and β-sheets connected by coils. We stress that in spite of the fact that all the
subsequences have been taken with the same connection topology, their free association can
create all the different structures with different connection topologies and the method intro-
duced is general enough. In Sect. 5, we use the Nelder–Mead search method to look for the
global minimum of the objective Steiner Ratio function introduced in Sect. 4. The robustness
and generality of the techniques used here can be verified by the coincidence of numerical
values with that obtained by working with this search method. We close the paper with some
comments on the generality of the present formulation, its extension to higher number of
dimensions and the application to the modelling of molecular chirality.

2 Sequences of evenly spaced points along a smooth and continuously differentiable
curve

Let �r = (x(λ), y(λ), z(λ)) to be a 3D curve parameterized by λ. The position vector of a
point on this curve will be given by �r j = (x j (λ), y j (λ), z j (λ)) = (x(λ j ), y(λ j ), z(λ j )). The
arc length between points of position vectors �r j+k and �r j is

s j+k − s j =
∫ λ j+k

λ j

√
x ′ 2 + y′ 2 + z′ 2 dλ, (1)

where (′) = d/dλ.
If the points are evenly spaced along the curve, we have,

s j+k − s j = k(s j+1 − s j ). (2)

The parameter value can always be taken as evenly spaced, or

λ j+k − λ j = k(λ j+1 − λ j ). (3)

The solution of these difference equation can be written as

s j = j S, (4)

λ j = j�, (5)

where S and � are new parameters.
From Eq. 1, we can see that the family of curves which satisfy Eq. 2 is given by

x ′ 2 + y′ 2 + z′ 2 = a2, (6)

where a is a constant.
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Two elementary solutions of Eq. 6 are a straight line and a right circular helix

�r =
(

k1z,
√

a2 − 1 − k2
1 z, z

)
, (7)

�r =
(√

a2 − α2 cos(z/α),
√

a2 − α2 sin(z/α), z
)
, (8)

with z as a parameter and 2πα the pitch of the helix.
If we choose the parameter as z satisfying a difference equation like (1) or (2), we can

write for the z-coordinate of the j th point

z j = j Z , (9)

and Z is a new parameter.
The corresponding position vectors of Eqs. 7, 8 will satisfy the relations

�r j+k − �r j = k(�r j+1 − �r j ), (10)

∥∥�r j+2 − �r j+1
∥∥ = ∥∥�r j+1 − �r j

∥∥, (11)

where ‖ · ‖ stands for the Euclidean norm.
A fortiori, the vectors of Eq.10 will satisfy also Eq. 11.
From Eqs. 8, 9 and 11 we can see that consecutive evenly spaced points along a right

circular helix are also consecutive evenly spaced in R
3. This is an expected property of the

right circular helix. However, this property is not necessary in the search of the minimum
length of a Steiner tree as will be shown in the next section. We can use then, instead a right
circular helix, any smooth and continuously differentiable curve, but the essential step of the
modelling is the consideration of evenly spaced points and not a particular curve to pass by
all of them.

The position vectors of the points in the curve are

�r j =
(√

x2
j + y2

j cos

(
arctan

y j

x j

)
,

√
x2

j + y2
j sin

(
arctan

y j

x j

)
, j Z

)
. (12)

The conditions to be satisfied for evenly spaced points in R
3 are:

x2
j + y2

j = r2(ϕ), ∀ j, (13)

arctan
y j

x j
= ϕ j = jφ, (14)

where we have taken another parameter λ = φ to describe the curve. This parameter satisfy
Eqs. 3 and 14 with φ a new parameter.

We then write the position vectors for n consecutive points on the curve and evenly spaced
in R

3:

�r j (φ) = (r(φ) cos( jφ), r(φ) sin( jφ), j Z(φ)) , 0 ≤ j ≤ n − 1. (15)

Analogously, the position vectors of the (n − 2) consecutive Steiner points along their
curve and also evenly spaced in R

3 should be written as

�rSk (φ) = (rS(φ) cos(kφ), rS(φ) sin(kφ), k ZS(φ)) , 1 ≤ k ≤ n − 2. (16)
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3 The organization of Steiner trees

We choose a fishbone or path-topology [2] for the Steiner tree. The point �rS1 is connected
to the points �r0 and �r1; the point �rSn−1 is connected to �rn−2 and �rn−1. The points �rSk are
connected consecutively as well as the intermediate couples of points �r j , �rSk such that j = k.

From the coordinates of the fixed and Steiner points given by Eqs. 15 and 16, we can
calculate the consequences of the requirement of edges meeting at Steiner points with angles
of (2π/3). This will lead to

ZS(φ) = Z(φ), (17)

Z2
S(φ) = r2

S(φ)A1(A1 + 1), (18)

where

A1 = 1 − 2 cos(φ) (19)

and

rS(φ)

r(φ)
= F(φ)√

A1(A1 + 1)
, (20)

F(φ) = Z(φ)

r(φ)
. (21)

If only full Steiner trees with (n − 2) points are to be considered, there is an additional
requirement to be imposed on the spanning trees: the smallest angle θ1 between consecutive
edges of a spanning tree whose vertices have position vectors �r j should be lesser than 2π/3.
This requirement can be expressed by:

− 1

2
< cos θ1 = −1 + (A1 + 1)2

2(F2 + A1 + 1)
. (22)

Equation 22 can be also written as

cos θ1 = max

(
−1

2
, −1 + (A1 + 1)2

2(F2 + A1 + 1)

)
. (23)

This kind of modelling is dependent of the function F(φ). If F(φ) = αφ, the curves given
by Eqs. 15 and 16 are right circular helices and 2πα is their pitch.

The representation of the position vectors of the fixed and Steiner points can be generalized
to represent surfaces. We now have, instead Eqs. 15, 16

�r j (φ, Z) = (r(φ, Z) cos( jφ), r(φ, Z) sin( jφ), j Z), 0 ≤ j ≤ n − 1, (24)

�rSk (φ, Z) = (rS(φ, Z) cos(kφ), rS(φ, Z) sin(kφ), k ZS), 1 ≤ k ≤ n − 2. (25)
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The organization of the full Steiner tree is the same as described above, but we now have
instead Eqs. 17, 18

ZS = Z , (26)

Z2
S = r2

S A1(A1 + 1) (27)

and rS(φ, z) is a surface given by

rS(φ, Z)

r(φ, Z)
= F(φ, Z)√

A1(A1 + 1)
, (28)

where

F(φ, Z) = Z

r(φ, Z)
. (29)

This modelling is independent of the functional form of F(φ, Z).
A candidate for a spanning tree will be formed by connecting all the points with position

vectors given by Eq. 24. Its Euclidean length is

lSP1
= r(φ, F)(n − 1)

√
F2 + A1 + 1. (30)

A fishbone topology as described above is adopted for writing the Euclidean length of the
candidate for a Steiner tree. We have after using Eqs. 26, 27,

lST1
= r(φ, F)

[
n − 2 + ((n − 3)A1 − 1)

F√
A1(A1 + 1)

+ 2

√
1 + (A1 − 1)

F√
A1(A1 + 1)

+ (A2
1 + A1 + 1)

F2

A1(A1 + 1)

⎤
⎦. (31)

We now define l1 = lSP1
/r(φ, F) and L1 = lST1

/r(φ, F). We have for a large set of
points, n � 1,

l1 = n
√

F2 + A1 + 1, (32)

L1 = n

(
1 + F

√
A1

A1 + 1

)
. (33)

There is a problem with formulae (30), (31) or (32), (33). These formulae do not contain
all the length values of a minimal spanning tree or Steiner minimal tree for 0 ≤ φ ≤ π . We
have to improve the present method by taking into consideration other possibilities of writing
formulae for the spanning and Steiner trees. This will be done by generalizing the sequences
of points from those given by Eqs. 24, 25. As a shortcoming of the present formulation as
well as a motivation to improve it, we announce that the ratios lST1

/ lSP1
and l1/L1 do not

correspond to a Steiner Ratio Function. These ratios are the convex envelope functions of
the corresponding Steiner Ratio functions. This will be shown explicitly in the next section
for n � 1.
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4 Generic sequences of points and Steiner ratio function

In this section we will introduce sequences of evenly spaced but non-consecutive points [3]
which can be formed from the sequences given by Eqs. 24 and 25. These subsequences can
be written as

(Pj )m, lPmax : �r j , �r j+m, �r j+2m, . . . , �r j+lP m, . . . , �r j+lPmaxm, 0 ≤ j ≤ m − 1, (34)

(Sk)m, lSmax : �Sk, �Sk+m, �Sk+2m, . . . , �Sk+lP m, . . . , �Sk+lPmaxm, 1 ≤ k ≤ m, (35)

where (m − 1) is the of skipped points necessary to form the subsequence.
The values lPmax, lSmax can be calculated from the following restrictions on the integer

generic index of the position vectors above, we have

j + lP m ≤ n − 1, 0 ≤ lP ≤ lPmax (36)

k + lSm ≤ n − 2, 0 ≤ lS ≤ lSmax (37)

From these equations, we can write

lPmax =
[

n − j − 1

m

]
, 0 ≤ j ≤ m − 1, (38)

lSmax =
[

n − k − 2

m

]
, 1 ≤ k ≤ m, (39)

where the square brackets above [x] stand for the greatest integer value ≤ x .
There are m subsequences of the form given by Eqs. 34 and 35. Each of them has (lPmax+1)

and (lSmax + 1) points, respectively. We then propose to define sequences of n and n − 2
points by

Pm =
m−1⋃
j=0

(Pj )m, lPmax , (40)

Sm =
m⋃

k=1

(Sk)m, lSmax , (41)

respectively.
The number of points of these sequences can be elementarily checked by using Eqs. 38

and 39, we get

m−1∑
j=0

(lPmax + 1) = m +
m−1∑
j=0

[
n − j − 1

m

]
= m + n − m = n, (42)

m∑
k=1

(lSmax + 1) = m +
m∑

k=1

[
n − k − 2

m

]
= m + n − m − 2 = n − 2. (43)
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The original sequences of Eqs. 24 and 25 are trivially included in the scheme given by
Eqs. 40 and 41. They are P1 = (P0)1, n−1 and S1 = (S1)1, n−1, respectively.

The coordinates of the points of the subsequences can be written analogously to Eqs. 26
and 27. We have,

�r j+lP m = (r(φ, Z) cos( j + lP m)φ, r(φ, Z) sin( j + lP m)φ, j Z), 0 ≤ j ≤ m − 1, (44)

�Sk+lSm = (
rSm (φ, Z) cos(k + lSm)φ, rSm (φ, Z) sin(k + lSm)φ, k ZSm

)
,

1 ≤ k ≤ m. (45)

A fishbone topology will be adopted for the organization of the Steiner tree for a couple
of subsequences (Pj )m, lPmax and (Sk)m, lSmax given by Eqs. 44 and 45, respectively. The first
point �Sk+m will be connected to the two first points �r j and �r j+m . The last point �Sk+lSmaxm

will be connected to the two last points, �r j+(lPmax−1)m and �r j+lPmaxm . The points �Sk+lSm are
connected consecutively as well as all the intermediate couples of points �r j+lP m , �Sk+lSm

with j = k, lP = lS . It is worthwhile to notice that the Steiner trees to be formed from the
subsequences above with fishbone topology could be associated in order to have a generic
connection topology for the resulting Steiner tree. The Euclidean length of the resulting
Steiner tree does not depend on the special combination of the subsequences with fishbone
topology. On each sub-Steiner tree formed by the subsequences (Pj )m, lPmax and (Sk)m, lSmax

as explained before, we introduce the requirement of edges meeting at each Steiner point
with angles of 2π/3. From Eqs. 44 and 45, the introduction of this requirement will lead to

ZSm = Z , (46)

m2 Z2
Sm

= r2
Sm

Am(Am + 1), (47)

where

Am = 1 − 2 cos(mφ) (48)

and rSm is a surface rSm (φ, Z) given by

rSm (φ, Z)

r(φ, Z)
= m F(φ, Z)√

Am(Am + 1)
, (49)

where

F(φ, Z) = Z

r(φ, Z)
. (50)

The additional requirement of full sub-Steiner trees with (n − 2) Steiner points gives for
the angle θm between consecutive edges of a spanning tree formed with the points of position
vectors �r j+lP m

− 1

2
cos θm = −1 + (Am + 1)2

2(m2 F2 + Am + 1)
, (51)

or

cos θm = max

(
−1

2
, −1 + (Am + 1)2

2(m2 F2 + Am + 1)

)
. (52)
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The Euclidean length of the candidate for a spanning corresponding to the union of the
subsequences (Pj )m, lPmax is now given by

lS Pm = r(φ, F)
[
(n − m)

√
m2 F2 + Am + 1 + (m − 1)

√
F2 + A1 + 1

]
, (53)

(m − 1) is the number of skipped points to form each subsequence and is also the number of
coils necessary to connect these subsequences.

Since the fishbone topology is adopted for each sub-tree formed by a couple of subse-
quences (Pj )m, lmax , (Sk)m, lSmax , we will have for the Euclidean length of the candidate of a
Steiner tree corresponding to the union of the subsequences (Sk)m, lSmax ,

lSTm = r(φ, F)

[
n − 2 + ((n − m − 2)Am − m)

m F√
Am(Am + 1)

+2

√
1 + (Am − 1)

m F√
Am(Am + 1)

+ (A2
m + Am + 1)

m2 F2

Am(Am + 1)

⎤
⎦, (54)

The straightforward but tedious derivation of Eqs. 53 and 54 has been done by using the
mathematical identities of Eqs. 42, 43.

We can now define lm = lS Pm /r(φ, F); Lm = lSTm /r(φ, F) for a large set of points,
n � 1. We have,

lm = n
√

m2 F2 + A1 + 1, (55)

Lm = n

(
1 + m F

√
Am

Am + 1

)
. (56)

The Eqs. 52–54 above correspond to the generalization of formulae (23), (30), (31) given
in the last section.

By using the usual prescription for a Steiner Ratio [2,4], we can have for n � 1,

ρ(φ, F) = min(m)(lm)

min(m)(Lm)
. (57)

We now collect some facts about the surfaces given into Eqs. 52–54.
1. The surfaces L1, L2, L3 intersect on a point, its coordinates in the interval 0 ≤ φ ≤ π

are given by

φ = π − arccos

(
2

3

)
; F =

√
30

9
, L1 = L2 = L3 = L = 10

√
3

9
. (58)

2. There is not a common intersection of m surfaces L1, L2, . . . , Lm for m ≥ 4 unless
the trivial one φ = 0, F = 0.

3. All the other triads of surfaces which intersect on a point have a lesser value for the
third coordinate as can be seen from Table 1 below, where we can see the coordinates of the
intersection points of these triads amongst the surfaces L1, . . . , L7.

4. From Eq. 52, the set of favoured surfaces lm and Lm which participate in the minimi-
zation process of Eq. 57 could be taken as the triads l1, l2, l3 and L1, L2, L3. The others
correspond to degenerated Steiner trees in the most part of the interval 0 ≤ φ ≤ π and should
be discarded. The Fig. 1 below shows the surfaces cos θm(φ, F) for m = 1, . . . , 5 and the
restriction to full Steiner trees imposed by the plane cos θm = −1/2.
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Table 1 Coordinates of the
intersection points for triads of
surfaces Lm

x F L

L1, L5, L6 1.116654868 0.1648758578 1.072288269

L1, L4, L5 1.351143469 0.2367361174 1.272895251

L1, L3, L4 1.705939270 0.3637117036 1.549758080

L3, L4, L7 1.782228977 0.1419984623 0.9981221038

L1, L2, L3 2.300523983 0.6085806198 1.924500897

L2, L3, L5 2.475644465 0.2664972618 1.345665351

L2, L5, L7 2.656751591 0.1337959340 0.9697845029

Fig. 1 The surfaces
cos θm (φ, F) for m = 1, . . . , 5
and the plane cos θm = −1/2

5. For surfaces lm of the numerator of Eq. 57, there are no triads of surfaces intersecting at
a point. There are couples of surfaces intersecting along straight lines parallel to F-axis. The
intersection straight lines with the lowest values of the third coordinate are given by l1 = l2
and l1 = l3. We can restrict the search for a minimum of Eq. 57 with this information and a
detailed analysis of the intersections of the surfaces ρ12, ρ13 and ρ1 which are given by

ρ13 = min(l1, l3)

min(L1, L2, L3)
, (59)

ρ12 = min(l1, l2)

min(L1, L2, L3)
, (60)

ρ1 = l1
min(L1, L2, L3)

. (61)

In Table 2 below we show the regions in the interval 0 ≤ φ ≤ π of the predominance
of surfaces given by Eqs. 59–61 in a minimization process. The Fig. 2 shows the relative
position of these surfaces and helps to corroborate our conclusions.
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Table 2 Regions of
predominance of the surfaces of
first column

φ

ρ13 [0, 0.1745329252]

[2.443460953, 2.459930995]

[2.617993878, π ]

ρ12 [0, 1.732472954]

[1.745329252, 2.443460953]

[2.459930995, 2.617993878]

ρ1 [0, 1.732472954]

[1.745329252, 2.443460953]

[2.459930995, 2.555907110]

[2.617993878, π ]

(a) r13 (light gray) and r12 (dark gray) (b) r12 (dark gray) and r1 (light gray)

Fig. 2 Surfaces ρ13, ρ12, ρ1 for the φ-interval [1, 5]. The mixed part means the superposition of the surfaces
in the corresponding region

The coordinates of the global minimum are given by

φ = π − arccos

(
2

3

)
; F =

√
30

9
, ρ1 = ρ12 = 1

10
(3

√
3 + √

7). (62)

In Fig. 3 we present the surface ρ1 and the restriction imposed by the planes ρ1 = 1, and
ρ1 = 0.615 (Du’s lowest bound) [6].

5 The global minimum of the Steiner ratio function

It is easy to define a compact dominium in the plane φ, F and to give a proof of the uniqueness
of the minimum of Eq. 62 by the Weierstrass theorem [3,7]. We prefer to give a computational
emphasis on the conclusions of the present work.
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Fig. 3 The surface ρ1(φ, F) and the planes ρ1 = 1 and ρ1 = 0.615

The Nelder–Mead method [8] is an unconstrained non-linear optimization method without
derivatives. It is very adequate for non-differentiable objective functions with a small number
of variables like functions ρ13, ρ12, ρ1. We give the result of application of this method to the
function ρ1(φ, F). For this problem of two variables, the coordinates of the initial simplex
(triangle) can be chosen from Eq. 61 and Tables 1 and 2, as

(2.2, 0.59); (2.2, 0.58); (2.3, 0.57)

φmin = 1.745329252, φmax = 2.443460953

Fmin = 0.5000000000, Fmax = 0.7000000000

and we get for the coordinates of the minimum:

φM = 2.300523983; FM = 0.6085806194, ρ1M = 0.7841903733. (63)

We can compare this result with that obtained with the analytical method of this work,
Eq. 62. They are the same within the 10-digits approximation used in the calculation with
the Nelder–Mead method. Actually, Eq. 62 is the correct result for any number of digits.

6 Concluding remarks

The analytical method which was presented in this work can be easily extended to any number
of dimensions. The essential 3D result here is that we recover the best upper value usually pro-
posed for the 3D Euclidean Steiner Ratio by starting from a generic cylindrical distribution.
This formulation is also adequate for deriving useful expressions of the geometric chirality
function [6] as well as for unveiling the true nature of the molecular processes which have
driven the formation of biomacromolecules. Research along these lines is now in progress
and will be published elsewhere.
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